Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[[triaquazinc(II)]- μ -2-nitroterephthalato- $\left.\kappa O^{1}: \kappa^{2} O^{4}, O^{4}\right]$ monohydrate]

Ming-Lin Guo* and Chen-Hu Guo

School of Materials and Chemical Engineering and Key Laboratory of Hollow Fibre Membrane Materials and Membrane Processes, Tianjin Polytechnic University,
Tianjin 300160, People's Republic of China
Correspondence e-mail: guomlin@yahoo.com
Received 15 May 2007
Accepted 25 June 2007
Online 5 July 2007
The title complex, $\left\{\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, has a onedimensional chain structure. The two carboxylate groups of the dianionic 2-nitroterephthalate ligand adopt mono- and bidentate chelating modes. The Zn atom shows distorted octahedral coordination, bonded to three O atoms from two carboxylate groups and three O atoms of three non-equivalent coordinated water molecules. The one-dimensional chains are aggregated into two-dimensional layers through inter-chain hydrogen bonding. The whole three-dimensional structure is further stabilized by inter-layer hydrogen bonds.

Comment

Metal-organic networks or coordination polymers have attracted much attention recently in the area of topology design and for their potential applications in adsorption, catalysis, luminescence, magnetism, etc. (Blatov et al., 2004; James, 2003; Janiak, 2003). The use of dicarboxylate ligands as small building blocks to generate metal-organic frameworks of different dimensionalities may lead to interesting network
architectures (Rodríguez-Martín et al., 2002; Guo \& Zhao, 2006). In particular, aromatic dicarboxylate ligands such as terephthalate (benzene-1,4-dicarboxylate, bdc) have been used in the architecture of polymeric metal complexes because

(I)
they can adopt bis-monodentate, bis-bidentate and combined modes of coordination to form short bridges via one carboxylate end, or long bridges via the aromatic ring, and this can lead to a great variety of structures. For example, as a bismonodentate ligand, the terephthalate dianion is known to bond to metals to give one-dimensional chain complexes, e.g. in $\left[\mathrm{Cu}(\mathrm{bdc})(N \text {-MeIm })_{2}\right]_{n}$ (where N-MeIm is N-methylimidazole) (Liu et al., 2005), $\left[\mathrm{Zn}(\mathrm{bdc})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (Ding et al., 2003) and $\left\{\left[\mathrm{Co}(\mathrm{bdc})(4 \text {-picoline })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](4 \text {-picoline) }\}_{n} \quad\right.$ (Groeneman et al., 1999). On the other hand, in its bis-bidentate and combined modes of coordination, the terephthalate dianion can be found to chelate through the two carboxylate O atoms, as in $[\mathrm{Cr}(\mathrm{OH})(\mathrm{bdc})]_{4 n}\left[\mathrm{HO}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}_{2} \mathrm{H}\right]_{3 n}$ (Millange et al., 2002), $[\mathrm{Cu}(L)(\mathrm{bdc})]_{n}[L$ is N-(2-aminoethyl)-3-amino-1-propanol] (Mukherjee et al., 2004) and [Ni(bdc) $\left(2,2^{\prime}\right.$-bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n} \quad$ (2,2'-bipy is $2,2^{\prime}$-bipyridine) (Go et al., 2004). However, in spite of this wealth of possibilities, only a few complexes of metal-nitroterephthalate systems have been reported to date. We have used the 2 -nitroterephthalate dianion as a ligand, and have obtained the title novel six-coordinate 2 -nitroterephthalate-zinc complex, (I). We describe here the structure of this one-dimensional metalnitroterephthalate coordination polymer, with strong $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ inter-chain bonding leading to a three-dimensional supramolecular network.

Figure 1
The structure of (I), showing the atom-numbering scheme and the coordination polyhedra for the Zn atoms. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbirtrary radii. A disordered water molecule is shown. [Symmetry code: (i) $-x, y+\frac{1}{2}$, $-z+\frac{1}{2}$.]

The asymmetric unit in the structure of (I) comprises one Zn atom, one complete 2-nitroterephthalate dianion and four non-equivalent water molecules, and shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Zn atom. Selected geometric parameters are given in Table 1.

The Zn atom of (I) is surrounded by an O_{6} donor set with octahedral geometry. The four equatorial sites are occupied by three O atoms from a monodentate carboxylate group (O1) and a bidentate carboxylate group [O^{i} and $\mathrm{O} 4^{\mathrm{i}}$; symmetry code: (i) $\left.-x, y+\frac{1}{2},-z+\frac{1}{2}\right]$, and by one coordinated water molecule, O9. Atoms O7 and O8 from two other water molecules occupy two of the opposing apices of the octahedron. The $\mathrm{Zn}-\mathrm{O}$ (water) distances range from 2.051 (2) to $2.090(2) \AA$ and the $\mathrm{Zn}-\mathrm{O}(2$-nitroterephthalate) distances are in the range 1.987 (2)-2.253 (2) \AA. Of these $\mathrm{Zn}-\mathrm{O}$ distances, $\mathrm{Zn}-\mathrm{O}^{\mathrm{i}}$ and $\mathrm{Zn}-\mathrm{O}^{\mathrm{i}}$ are the longest. The cis- $\mathrm{O}-$ $\mathrm{Zn}-\mathrm{O}$ angles range from 85.32 (8) to 105.49 (9) ${ }^{\circ}$, except for $\mathrm{O} 3^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$, which is $58.80(8)^{\circ}$. The trans $-\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ angles span the range $156.60(9)-172.19(8)^{\circ}$. Thus, the coordination octahedron around the Zn atom is significantly distorted.

In the present structure, the versatility of the dianionic 2-nitroterephthalate ligand can be clearly seen. Mono- and bidentate chelating and bridging bonding modes are present. Atom O 1 of the $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{O} 2$ carboxylate group has a monodentate mode, while atoms O 3 and O 4 of the $\mathrm{O} 3 / \mathrm{C} 8 / \mathrm{O} 4$ carboxylate group adopt a bidentate 1,2-chelating mode to the Zn atom. These adopt a bridging mode via the aromatic ring to connect two Zn atoms. The $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angle for the monodentate carboxylate group $(\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{O} 2)$ is $127.5(3)^{\circ}$, notably larger than the value of $120.8(3)^{\circ}$ for the chelating carboxylate group. The two $\mathrm{C}-\mathrm{O}$ bond distances $(\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{O} 2-\mathrm{C} 1$) of the monodentate carboxylate group are 1.267 (4) and 1.232 (4) \AA, respectively, while the two $\mathrm{C}-\mathrm{O}$ bond distances ($\mathrm{O} 3-\mathrm{C} 8$ and $\mathrm{O} 4-\mathrm{C} 8$) of the chelating carboxylate group are 1.262 (4) and 1.259 (4) \AA, respectively. This indicates that the mesomeric effect for the chelating carboxylate group is greater than that of the monodentate carboxylate group.

Figure 2
The packing of (I), showing the hydrogen-bond interactions (dashed lines) in the direction of the $b c$ plane, viewed down the a axis. The minor disorder component has been omitted.

In the crystallographic c direction, perpendicular to the direction of chain propagation, neighbouring chains are linked together via $\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 3^{\text {ii }}$ (part of a bifurcated hydrogen bond) and $\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\text {iii }}$ hydrogen-bond interactions (symmetry codes and geometric details are given in Table 2). This results in the Zn atoms stacking in a zigzag fashion along the c direction and the aryl rings of the 2-nitroterephthalate ligands stacking along the c direction, ca $3.93 \AA$ apart. In this way, a two-dimensional layer is formed parallel to the bc plane (Fig. 2). Supramolecular connectivity within this layer is further enhanced by hydrogen bonds involving the uncoordinated water molecules (Table 2).

The three coordinated water molecules, a disordered water molecule and the nitro group ($\mathrm{O} 5 / \mathrm{N} 1 / \mathrm{O} 6$) also engage in hydrogen bonds (Table 2), which influence the conformation

Figure 3
Packing diagrams for (I), viewed down the c axis, showing the hydrogenbonding interactions (dashed lines) in the direction of the $a b$ plane for (a) the $\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2$ and $\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 4$ hydrogen bonds, and (b) the hydrogen bonds involving $\mathrm{O} 9-\mathrm{H} 9 B \cdots \mathrm{O} 2$, $\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 5$, $\mathrm{O} 10-$ $\mathrm{H} 10 B \cdots \mathrm{O} 6, \mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 4$, etc. The minor disorder component has been omitted.
of the polymer. The strong hydrogen bond $\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\mathrm{v}}$ plays an important role (Brown, 1976) in the aggregation of the one-dimensional polymer through the formation of a 12membered hydrogen-bonded $R_{2}^{2}(12)$ ring (Bernstein et al., 1995) between chains (Fig. 3a). Furthermore, the hydrogen bond $\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 4^{\text {vi }}$ links each chain to its neighbour via an $R_{2}^{2}(8)$ grouping (Fig. 3a). The resulting supramolecular aggregation yields a zigzag stack of Zn atoms along the a direction. Also in the a direction, perpendicular to the direction of chain propagation, $\mathrm{O} 9-\mathrm{H} 9 B \cdots \mathrm{O} 2^{\text {iv }}$ hydrogen bonds link neighbouring chains together and complete a twodimensional layer parallel to the crystallographic $a b$ plane (Fig. 3b). Other hydrogen bonds, such as $\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 5$, $\mathrm{O} 10-\mathrm{H} 10 B \cdots \mathrm{O} 6, \mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 4^{\text {iv }}$ and $\mathrm{O} 10^{\prime}-\mathrm{H} 11 A \cdots$ $\mathrm{O} 4^{\text {iv }}$, involving free water molecules, further enhance the aggregation in this layer.

Experimental

The addition of anhydrous sodium carbonate ($0.43 \mathrm{~g}, 4 \mathrm{mmol}$) to a stirred solution of zinc nitrate hexahydrate ($1.2 \mathrm{~g}, 4 \mathrm{mmol}$) in water $(30 \mathrm{ml})$ produced a white precipitate, which was filtered off and washed with distilled water. The precipitate was subsequently added to a stirred solution of 2-nitroterephthalic acid $(0.53 \mathrm{~g}, 2.5 \mathrm{mmol})$ in boiling water (20.0 ml) over a period of 5 min . After filtration, slow evaporation over a period of two weeks at room temperature yielded colourless needle-like crystals of (I).

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

$$
V=1216.6(4) \AA^{3}
$$

$M_{r}=346.55$
Monoclinic, $P 2_{1} / c$
$Z=4$
Mo $K \alpha$ radiation
$a=7.8862$ (12) \AA
$\mu=2.07 \mathrm{~mm}^{-1}$
$b=20.501$ (5) \AA
$T=294$ (2) K
$c=7.7119(13) \AA$
$0.20 \times 0.12 \times 0.08 \mathrm{~mm}$
$\beta=102.633$ (16)

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.743, T_{\text {max }}=0.845$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.081$
$S=1.12$
2489 reflections
191 parameters

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}}$	$2.211(2)$	$\mathrm{Zn} 1-\mathrm{O} 7$	$2.090(2)$
$\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.253(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.267(4)$
$\mathrm{Zn} 1-\mathrm{O} 1$	$1.987(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.232(4)$
$\mathrm{Zn} 1-\mathrm{O} 9$	$2.051(2)$	$\mathrm{O} 3-\mathrm{C} 8$	$1.262(4)$
$\mathrm{Zn} 1-\mathrm{O} 8$	$2.089(2)$	$\mathrm{O} 4-\mathrm{C} 8$	$1.259(4)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 9$	$97.77(9)$	$\mathrm{O} 9-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$97.85(8)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 8$	$95.59(8)$	$\mathrm{O} 8-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$87.20(7)$
$\mathrm{O} 9-\mathrm{Zn} 1-\mathrm{O} 8$	$89.37(9)$	$\mathrm{O} 7-\mathrm{Zn} 1-4^{\mathrm{i}}$	$85.32(8)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 7$	$92.22(9)$	$\mathrm{O} 3^{i}-\mathrm{Zn} 1-4^{\mathrm{i}}$	$58.80(8)$
$\mathrm{O} 9-\mathrm{Zn} 1-\mathrm{O} 7$	$89.44(9)$	$\mathrm{O} 8-\mathrm{Zn} 1-\mathrm{O} 7$	$172.19(8)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$	$105.49(9)$	$\mathrm{O} 9-\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$	$156.60(9)$
$\mathrm{O} 8-\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}}$	$90.80(8)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$164.16(9)$
$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}}$	$87.24(8)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$127.5(3)$

Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.
Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 3^{\text {ii }}$	0.85	2.31	2.966 (3)	135
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3^{\text {iii }}$	0.85	1.95	2.783 (3)	164
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 10^{\text {iii }}$	0.85	1.86	2.699 (5)	169
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 10^{\text {iii }}$	0.85	2.22	2.977 (14)	149
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 10^{\text {iii }}$	0.85	1.75	2.584 (11)	167
O10-H10B..O6	0.85	2.38	2.957 (9)	126
O8-H8B . O 5	0.85	2.47	2.974 (3)	119
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 2^{\text {iv }}$	0.85	2.44	2.987 (3)	123
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 4^{\text {iv }}$	0.85	2.38	2.858 (5)	116
$\mathrm{O} 10^{\prime}-\mathrm{H} 11 A \cdots \mathrm{O} 4^{\text {iv }}$	0.85	2.28	2.855 (11)	125
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{v}$	0.85	1.82	2.672 (3)	177
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 4^{\text {vi }}$	0.85	1.93	2.778 (3)	170
$\mathrm{O} 10^{\prime}-\mathrm{H} 11 B \cdots \mathrm{O} 7^{\text {vii }}$	0.85	2.50	2.94 (3)	113

Symmetry codes: (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $x+1, y, z$; (v)
$-x,-y+1,-z+1$; (vi) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (vii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3096). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blatov, V. A., Carlucci, L., Cianib, G. \& Proserpio, D. M. (2004). CrystEngComm, 6, 377-395.
Brown, I. D. (1976). Acta Cryst. A32, 24-31.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, H., Chen, W., Yue, Q., Chen, J.-S. \& Wang, S.-N. (2003). Chin. J. Chem. 21, 1305-1308.
Go, Y., Wang, X., Anokhina, E. V. \& Jacobson, A. J. (2004). Inorg. Chem. 43, 5360-5367.
Groeneman, R. H., MacGillivray, L. R. \& Atwood, J. L. (1999). Inorg. Chem. 38, 208-209.
Guo, M.-L. \& Zhao, Y.-N. (2006). Acta Cryst. C62, m563-m565.
James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.
Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
Liu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. \& Wang, X. (2005). J. Chem. Crystallogr. 35, 983-987.
Millange, F., Serre, C. \& Ferey, G. (2002). Chem. Commun. pp. 822-823.
Mukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. \& Chaudhuri, N. R. (2004). Eur. J. Inorg. Chem. pp. 4675-4680.

Rodríguez-Martín, Y., Hernández-Molina, M., Delgado, F. S., Pasán, J., RuizPérez, C., Sanchiz, J., Lloret, F. \& Julve, M. (2002). CrystEngComm, 4, 522535.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

